首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55339篇
  免费   5520篇
  国内免费   2823篇
电工技术   5507篇
技术理论   5篇
综合类   4861篇
化学工业   6161篇
金属工艺   4947篇
机械仪表   3221篇
建筑科学   3907篇
矿业工程   1027篇
能源动力   1068篇
轻工业   2617篇
水利工程   1025篇
石油天然气   1015篇
武器工业   587篇
无线电   6739篇
一般工业技术   8944篇
冶金工业   1229篇
原子能技术   457篇
自动化技术   10365篇
  2024年   124篇
  2023年   797篇
  2022年   1273篇
  2021年   1747篇
  2020年   1753篇
  2019年   1526篇
  2018年   1320篇
  2017年   1749篇
  2016年   2219篇
  2015年   2956篇
  2014年   3975篇
  2013年   3378篇
  2012年   3956篇
  2011年   5084篇
  2010年   4051篇
  2009年   3950篇
  2008年   3595篇
  2007年   3836篇
  2006年   2917篇
  2005年   2640篇
  2004年   2205篇
  2003年   1981篇
  2002年   1656篇
  2001年   1079篇
  2000年   808篇
  1999年   676篇
  1998年   499篇
  1997年   402篇
  1996年   329篇
  1995年   241篇
  1994年   195篇
  1993年   130篇
  1992年   127篇
  1991年   79篇
  1990年   80篇
  1989年   77篇
  1988年   55篇
  1987年   23篇
  1986年   22篇
  1985年   26篇
  1984年   26篇
  1983年   17篇
  1982年   17篇
  1981年   22篇
  1980年   14篇
  1979年   14篇
  1978年   4篇
  1974年   7篇
  1958年   3篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
本文介绍了柳钢冷轧板带厂1550 mm单机架平整机机前甩尾轧制的工艺。改进前轧制每卷钢卷生产效率低,钢卷成材率低,改进后生产效率、成材率明显提高,部分规格的钢卷能实现带尾剪切长度为零。  相似文献   
42.
与传统比例-积分-微分(PID)控制方法相比,滑模控制(SMC)方法可以比较容易地将不确定性纳入控制器设计中,从而增强系统的鲁棒性。探索了SMC技术在运载器主动段姿态控制中的工程应用,首先通过分析基于趋近律的SMC系统,提出了降低不连续切换项系数的需求,然后研究了基于干扰上界的SMC方法。三通道小偏差仿真结果验证了两种方法的控制效果,表明第2种控制器的鲁棒性更好,稳态误差小,同时发动机喷管摆角需求较小。  相似文献   
43.
川西彭州地区三叠系雷口坡组雷四上亚段潮坪相薄储层识别难度极大。围绕如何从复合地震强反射中区分并识别上、下两套储层面临的地球物理难题,采用先“分”后“合”的研究思路,基于实际地层结构及不同储层叠加样式建立正演模型,利用全波场波动方程正演模拟技术,剖析了不同主频条件下薄储层的地震响应特征,通过波形差异化分析,从复合地震响应中“剥离”出了两套储层所引起的地震响应特征及变化规律,明确了两套储层在不同频带下的地震识别标志和识别方法,为该区强反射界面干扰下两套薄互层储层辨识机理分析及精准预测奠定了基础。基于不同频带下薄储层辨识机理的分析结果,定性预测了薄储层平面展布,提出了深层潮坪相薄储层识别和预测难题的解决方案,为该区地震资料品质评价、面向薄储层的地震采集技术设计、地震资料处理及薄储层预测提供了依据和指导。  相似文献   
44.
The structural changes induced in a CoCrCuFeNi multicomponent nano-crystalline high-entropy alloy (HEA) under fast electron irradiation were investigated by in-situ transmission electron microscopy (TEM) using a high voltage electron microscope (HVEM). A fine-grained face centered cubic (fcc) single phase was obtained in the sputtered specimens. The fcc solid solution showed high phase stability against irradiation over a wide temperature range from 298 to 773 K, and remained as the main constituent phase even when the samples were irradiated up to 40 displacement per atom (dpa). Moreover, the irradiation did not seem to induce grain coarsening. This is the first report on the irradiation damage in 5-component HEA under MeV electron irradiation.  相似文献   
45.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   
46.
This study presents a design criterion developed for fatigue strengthening of a 120-year-old metallic railway bridge in Switzerland and presents a pre-stressed un-bonded reinforcement (PUR) system developed to apply the strengthening. The PUR system uses carbon fiber reinforced polymer (CFRP) plates; however, unlike conventional pre-stressed CFRP reinforcement methods, preparation of the existing metallic bridge surface is not required. This decreases the time required for on-site strengthening procedures. The principle of the constant life diagram (CLD) and two fatigue failure criteria (Johnson and Goodman) are described. Analytical formulations are developed based on the CLD method to determine the minimum CFRP pre-stress level required to prevent fatigue crack initiation. The PUR system uses an applied pre-stress force to reduce the mean stress level (and stress ratio) to shift an existing fatigue-susceptible metallic detail from the ‘at risk’ finite life regime to the ‘safe’ infinite life regime. The applied CLD method is particularly valuable when the stress history of the detail is not known and it is difficult to assess the remaining fatigue life. Moreover, it is shown that the currently adopted approach in many structural codes which emphasizes stress range as the dominant parameter influencing fatigue life are non-conservative for tension–tension stress patterns (i.e., stress ratios of 0 < R < 1). Analyses show that the modified Johnson formula accurately reflects the combined effect of stress range, mean stress level, and material properties, and offers a relatively easy design procedure. Details of a retrofit field application on members of a riveted wrought iron railway bridge are given. A wireless sensor network (WSN) system is used for long-term monitoring of the on-site CFRP stress levels and temperature of the retrofitted details. WSN measurements indicate that increases in ambient temperature result in increased CFRP pre-stress levels.  相似文献   
47.
Magnetic MnFe2O4 nanopowders were synthesized by an original solvothermal method in the absence and in the presence of tetra-n-butylammonium bromide (TBAB) and Tween 80 (TW) as surfactants. Manganese ferrite/polyaniline (PANI) hybrid materials were synthesized by in situ polymerization of aniline on the surface of MnFe2O4 using ammonium persulfate as oxidant. The purpose of the study was to investigate the influence of the two surfactants on the properties of the MnFe2O4 powders and of their composites with PANI. The specific surface area, the cumulative surface area of pores and the cumulative volume of pores are influenced by the nature of surfactant in case of MnFe2O4 powders and are higher by comparison to those of the MnFe2O4/PANI hybrid materials. The values of saturation magnetization in case of MnFe2O4 powders are higher than those of the hybrid materials and are not influenced by the surfactant nature. These features revealed that MnFe2O4 powders can be efficiently used as adsorbents for the purification of wastewaters. The values of the electrical conductivity of the composites exhibit a significant increase in comparison to the MnFe2O4 powders and depend on the surfactant nature. The highest value of electrical conductivity was achieved by the composite obtained using Tween 80 as surfactant (σDC = 54.5·10?5S?m?1) which was close to that of PANI (σDC = 61.2·10?5 S?m?1). The fact that the magnetic and electric properties of the synthesized MnFe2O4/PANI composites can be changed by design, demonstrate the high potential of these materials to be used in magneto-electric applications.  相似文献   
48.
In this study, two dimensional (2D) and quasi three-dimensional (quasi-3D) shear deformation theories are presented for static and free vibration analysis of single-layer functionally graded (FG) plates using a new hyperbolic shape function. The material of the plate is inhomogeneous and the material properties assumed to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori–Tanaka model, in terms of the volume fractions of the constituents. The fundamental governing equations which take into account the effects of both transverse shear and normal stresses are derived through the Hamilton's principle. The closed form solutions are obtained by using Navier technique and then fundamental frequencies are found by solving the results of eigenvalue problems. In-plane stress components have been obtained by the constitutive equations of composite plates. The transverse stress components have been obtained by integrating the three-dimensional stress equilibrium equations in the thickness direction of the plate. The accuracy of the present method is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.  相似文献   
49.
《Ceramics International》2015,41(7):8614-8622
SnO2–ZnO nanocomposite thin films, prepared by a simple carbothermal reduction based vapor deposition method, were irradiated with 8 MeV Si3+ ions for engineering the morphological and optical properties. The surface morphology of the nanocomposites was studied by atomic force microscopy (AFM), while the optical properties were investigated by photoluminescence spectroscopy (PL) and Raman spectroscopy. AFM studies on the irradiated samples revealed growth of nanoparticles at lower fluence and a significant change in surface morphology leading to the formation of nanosheets and their aggregates at higher fluences. A tentative mechanism underlying the observed ion induced evolution of surface morphology of SnO2–ZnO nanocomposite is proposed. PL studies revealed strong enhancement in the UV emissions from the nanocomposite thin film at lower fluence, while a drastic decrease in the UV emissions along with a significant enhancement in the defect emissions has been observed at higher fluences.  相似文献   
50.
The surface modifications produced by UV-ozone treatment of two ethylene-vinyl acetate (EVA) copolymers containing 12 and 20 wt% vinyl acetate (EVA12 and EVA20 respectively) were studied. The treatment with UV-ozone improved the wettability of both EVAs due to the creation of new carbon–oxygen moieties. The extent of these modifications increased with increasing length of the treatment and the modifications produced in EVA20 were produced for shorter lengths of treatment. The UV-ozone treatment also created roughness and heterogeneities on the EVA surfaces. Whereas roughness formation prevailed on the UV-ozone treated EVA12, important ablation was dominant on the treated EVA20. T-peel strength values in joints made with polychloroprene adhesive increased when the EVAs were treated with UV-ozone. Short length of UV-ozone treatment (1 min) produced higher T-peel strength in joints made with EVA20 whereas higher T-peel strength values in joints made with EVA12 were obtained after treatment for 5–7.5 min in which a cohesive failure into a weak boundary layer on the treated EVA surface was found. Furthermore, the adhesion of UV-ozone treated EVA20 to acrylic paint increased. Finally, the ageing resistance of the treated EVA/polychloroprene adhesive joints was good and the surface modifications on the UV-ozone treated EVAs lasted for 24 h after treatment at least.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号